A detailed numerical treatment of the boundary conditions imposed by the skull on a diffusion-reaction model of glioma tumor growth. Clinical validation aspects
نویسندگان
چکیده
The study of the diffusive behavior of glioma tumor growth is an active field of biomedical research with considerable therapeutic implications. An important aspect of the corresponding computational problem is the mathematical handling of boundary conditions. This paper aims at providing an explicit and thorough numerical formulation of the adiabatic Neumann boundary conditions imposed by the skull on the diffusive growth of gliomas and in particular on glioblastoma multiforme (GBM). Additionally, a detailed exposition of the numerical solution process for a homogeneous approximation of glioma invasion using the Crank–Nicolson technique in conjunction with the Conjugate Gradient system solver is provided. The entire mathematical and numerical treatment is also in principle applicable to mathematically similar physical, chemical and biological phenomena. A comparison of the numerical solution for the special case of pure diffusion in the absence of boundary conditions or equivalently in the presence of adiabatic boundaries placed in infinity with its analytical counterpart is presented. Numerical simulations for various adiabatic boundary geometries and non zero net tumor growth rate support the validity of the corresponding mathematical treatment. Through numerical experimentation on a set of real brain imaging data, a simulated tumor has shown to satisfy the expected macroscopic behavior of glioblastoma multiforme including the adiabatic behavior of the skull. The paper concludes with a number of remarks pertaining to both the biological problem addressed and the more generic diffusion–reaction context. 2012 Elsevier Inc. All rights reserved.
منابع مشابه
A Numerical Handling of the Boundary Conditions Imposed by the Skull on an Inhomogeneous Diffusion-Reaction Model of Glioblastoma Invasion Into the Brain: Clinical Validation Aspects
A novel explicit triscale reaction-diffusion numerical model of glioblastoma multiforme tumor growth is presented. The model incorporates the handling of Neumann boundary conditions imposed by the cranium and takes into account both the inhomogeneous nature of human brain and the complexity of the skull geometry. The finite-difference time-domain method is adopted. To demonstrate the workflow o...
متن کاملA numerical treatment of a reaction-diffusion model of spatial pattern in the embryo
In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...
متن کاملA stochastic mathematical model of avascular tumor growth patterns and its treatment by means of noises
Due to the rate increase in cancer incidence, many researchers in different fields have been conducting studies on cancer-related phenomena. Most studies are conducted to focus on cellular and molecular aspects of cancerous diseases and treatment strategies. Physicists have been using mathematical modeling and simulation to explain the growth pattern of tumors. Although most published studies i...
متن کاملNumerical Study on the Reaction Cum Diffusion Process in a Spherical Biocatalyst
In chemical engineering, several processes are represented by singular boundary value problems. In general, classical numerical methods fail to produce good approximations for the singular boundary value problems. In this paper, Chebyshev finite difference (ChFD) method and DTM-Pad´e method, which is a combination of differential transform method (DTM) and Pad´e approximant, are applied for sol...
متن کاملIntroduced a Modified Set of Boundary Condition of Lattice Boltzmann Method Based on Bennett extension in Presence of Buoyancy Term Considering Variable Diffusion Coefficients
Various numerical boundary condition methods have been proposed to simulate various aspects of the no-slip wall condition using the Lattice Boltzmann Method. In this paper, a new boundary condition scheme is developed to model the no-slip wall condition in the presence of the body force term near the wall which is based on the Bennett extension. The error related to the new model is smaller tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 218 شماره
صفحات -
تاریخ انتشار 2012